9月24日,发表在《科学》杂志上的一项研究中,加州大学旧金山分校的研究员设计出一个能够严格控制T细胞行为的“分子开关”;这一突破成果有望解决T细胞治疗严重副作用的重大障碍。
在过去的二十年里,科学家一直致力于细胞疗法的研究,这是癌症免疫疗法中一个非常热门的分支;其中以CAR-T疗法最为著名。该疗法对多种类型的化学疗法抵抗的白血病有显著的治疗效果。然而,CAR-T疗法也会导致严重的副作用,可能需要在重症监护病房进行监控。有一些病人在回输了CAR-T细胞或者其它形式的工程T细胞后,导致了死亡。
论文的资深作者 Wendell Lim教授说:“T细胞是真正强大的野兽,当它们被激活后会有致命的风险。因此,我们需要一个远程控制系统来控制这些工程T细胞在体内的作用。”
颠覆常规研究思路,开发“沉默”CAR-T系统
一些科学家是通过设计开发“自杀开关”来解决这个问题,即在副作用变得太危险的时候启动自杀机制,杀死CAR-T细胞。Lim说:“这就像杀死自己的士兵一样。这个过程也是要完全终止复杂且昂贵的治疗。”在这项研究中,科学家们采用了完全相反的方法,创建了一种新型的CAR-T细胞,这种细胞一开始处于默认关闭的状态。
像传统的CAR-T细胞一样,这种新型的T细胞会靶向癌细胞并与之相互作用;然而,除非使用了特别设计的药物,否则这些细胞将不会发动任何的免疫攻击。这种控制药物是CAR-T细胞所含组件的化学桥,负责细胞的激活;当药物不存在时,T细胞恢复到关闭状态。
科研人员用显微镜记录这一研究结果。实验室的培养皿中有一种能够表达CD19蛋白的细胞,这种蛋白是癌细胞的特征蛋白;新型的工程T细胞快速的向这种细胞移动,抓住它后,却不采取任何的行动。但是当控制药物加入到培养皿中后,表达CD19的细胞会一个接一个被T细胞杀死。
相同的结果也发生在移植了白血病细胞的小鼠模型中。这些癌细胞只有在使用了控制药物后才会被Lim研究小组的新型CAR-T细胞有效地清除。研究人员开发的这款基于药物的远程控制系统不仅仅能够切换CAR-T细胞“开”和“关”的状态;更像一个变阻器,即通过控制药物的不同剂量精确调节T细胞免疫活动的水平。这些不同的能力将可用于解决CAR-T细胞治疗的副作用。
两大优势实现细胞免疫疗法的精准治疗
1.激活时间可控制
CAR-T细胞治疗是指从患者的血液中分离出T细胞,再通过基因工程手段使T细胞携带能够靶向患者肿瘤的CARs,然后再回输到血液中。一旦CAR-T细胞进入体内,除了直接攻击肿瘤外,它还会释放一些细胞因子,招募额外的T细胞来对抗肿瘤。
回输到血液中的CAR-T细胞到达身体预定的部分之前,它会经过心脏和肺,从而对这些器官造成伤害。Lim研究小组开发的这种可远程控制的CAR-T细胞让医生能够控制T细胞的活性状态,如等到心脏和肺所受的副作用很小时,再激活T细胞的活性。
2.药物剂量可控制
事实上,就算CAR-T细胞只攻击正确的靶标(癌细胞),副作用还是会发生。在肿瘤溶解综合症中,大量的肿瘤细胞快速、连续的死亡会释放出身体不能承受的毒性物质。另一种副作用被称为“细胞因子风暴”;这种危及生命的恶性循环会招募无数的T细胞到癌症部位,这些新来的T细胞又会释放自己的细胞因子。
现在,通过这种新型的CAR-T系统,医生可以通过使用合适的控制药物剂量调节免疫反应的水平,从而精确管理副作用,满足不同病人的个体化需求。
Lim强调,在目前的实验中,控制药物的半衰期对临床应用来说还太短。不过,他相信,该研究为CAR-T细胞远程控制的实践提供了基础。此外,除了用药物作为CAR-T的远程开关外,研究人员还在寻找其它可以应用到该领域的技术,比如光等。
参考文献
Remote control of therapeutic T cells through a small molecule–gated chimeric receptor
文献检索:DOI: 10.1126/science.aab4077
There is growing promise in using engineered cells as therapeutic agents. For example, synthetic Chimeric Antigen Receptors (CARs) can redirect T cells to recognize and eliminate tumor cells expressing specific antigens. Despite promising clinical results, excessive activity and poor control over such engineered T cells can cause severe toxicities. We present the design of “ON-switch” CARs that enable small molecule-control over T cell therapeutic functions, while still retaining antigen specificity. In these split receptors, antigen binding and intracellular signaling components only assemble in the presence of a heterodimerizing small molecule. This titratable pharmacologic regulation could allow physicians to precisely control the timing, location, and dosage of T cell activity, thereby mitigating toxicity. This work illustrates the potential of combining cellular engineering with orthogonal chemical tools to yield safer therapeutic cells that tightly integrate both cell autonomous recognition and user control.
来源:生物探索