3D打印是一项让人着迷的技术。因为它可以快速高效的制造出个性化的产品。随着打印技术的成熟,3D打印逐渐被引入到医疗行业,因为每年都有很多人在苦苦等待合适的组织和器官移植。
据Wohlers Associates统计,仅在2014年,3D生物打印在医疗行业的市场需求为5亿美元。在每年高达18%的复合年均增长率地推动下,预计到2022年,3D生物打印的市场规模将激增至18亿美元。
高校和科研院所作为当今社会创新最活跃的组织机构,正在催生一场由3D生物打印引领的医疗革命。
Harvard University:开含血管组织3D打印先河
关于Harvard University,我想应该不用做太多的介绍,即使是今天要介绍的哈佛大学Wyss研究所,在业界也是大名鼎鼎。
在十余年之前,3D生物打印还没有现在这么火。那时候研究人员已经可以用3D打印机打印一些生物材料,但是他们打印的组织总是很薄(厚度大约为一角钱的三分之一),因为他们找不到在组织里面植入血管的办法。在这样的情况下,打印的组织稍微厚一点点,里面的很多细胞就会因为缺少营养物质,代谢产物无法排出,最终窒息或者毒发身亡。
哈佛大学Wyss研究所Jennifer A. Lewis实验室的研究人员率先解决了这个问题。Lewis带领的研究团队发明了一种新的3D打印方法,可以打印出布满血管,由多种细胞和细胞间质组成的组织。2014年2月,Lewis实验室的研究成果刊登在《Advanced Materials》上(1)。
要打印出包含血管的模拟人体组织,打印材料是关键。Lewis研究团队开发了三种不同的“生物墨水”:固定细胞的细胞间质“墨水”;细胞间质和特定细胞混合成的“墨水”;以及为了生成血管而特制的“墨水”,这种墨水有一种特殊的性质,在低温的条件下会自动融解。
在将三种“墨水”在特定的程序下打印完毕之后,将人工组织置于低温条件下,此时那些为血管预留的位置就会逐渐融化开来,剩下的就是布满各种管道的组织。此时,Lewis研究团队会在管道中注入血管内皮细胞,这些细胞就会附着在通道内壁,重新发育成成熟的血管。至此,一个模拟人体组织的人工组织便形成了。
Lewis研究团队的研究成果让3D打印又往前走了一大步。Lewis的终极理想是打印出可以用于人体移植的器官,但是在当时的条件下,显然还有很长的路要走。但这并不妨碍Lewis将她的研究成果用于药物的研发。
Carnegie Mellon University:想要打印心脏和大脑
Carnegie Mellon University(卡内基梅隆大学,简称CMU),坐落在宾夕法尼亚州的匹兹堡,是一所美国着名的研究型大学。
当大部分研究人员都在研究如何打印骨骼、鼻子和耳朵的时候,来自CMU的Adam W. Feinberg研究团队却不满足于此,他们还想要打印心脏和大脑。
Feinberg研究团队声称,他们已经能够利用冠状动脉的MRI影像以及胚胎心脏的3D图像,通过3D生物打印,以较高的分辨率和质量,将胶原蛋白、海藻酸盐和纤维蛋白等软材料,打印成无生物活性的动脉等。2015年10月Feinberg研究团队的3D打印研究成果刊登在《科学进展》上(2)。
在不久的将来,Feinberg研究团队会把心脏细胞纳入这些3D打印组织结构,利用这个支架的帮助人工心脏形成具有收缩能力的肌肉。
University of California, San Diego:利用IPS细胞打印人工肝脏
University of California, San Diego(加州大学圣迭戈分校,简称为UCSD,又常译为加州大学圣地亚哥分校)是一所位于美国加州的着名公立大学。
1989年毕业于清华大学、现任职于UCSD的Shaochen Chen教授发现,获得FDA批准上市的药品的研发道路是极其曲折的,这中间一般需要12年的时间和18亿美元的资金投入。这主要是因为研究人员在研发药物时,没有合适的实验模型。
所以Chen教授就想为那些药企制造模拟人体器官,希望能大幅降低药企研发成本,加快新药面市的进程。于是,Chen教授就带领团队开始了3D打印器官的研究。
今年2月份,Chen教授利用3D生物打印设备打印肝脏的研究论文刊发在《PNAS》上(3)。在Chen教授的人工肝打印中使用了诱导多功能干细胞(iPSCs)、诱导脂肪源干细胞和脐静脉内皮细胞,将这三种细胞联合打印,便可以形成模拟的人工肝。
Wake Forest University:全球首个动物体可存活3D打印耳朵
Wake Forest University(维克森林大学)建于1834年,是美国一所极富盛名的综合性研究大学,连续18年全美大学综合排名25名左右,素有“南哈佛”的美誉。由于该校对招收国际学生相当严格,故而在中国知名度较低。
对于3D生物打印器官而言,长久以来,一直困扰研究人员的一个问题是:如何让血液在打印的器官中流动,以保证打印器官中的细胞存活。
今年2月份来自Wake Forest University的Anthony Atala团队,为解决这一世界性的难题做出了巨大的贡献。他们的研究成果刊登在《自然生物技术上》(4)。
Atala团队创建了一种新的打印模型(ITOP生物打印机),可以打印布满小通道的骨骼、肌肉和软骨组织,这种组织在植入小白鼠和兔子体内之后,通道里便可以长出血管,给打印的器官提供养分,维持器官的功能。
最让人兴奋的是,ITOP目前可以打印出可以在小鼠身上存活的耳朵。这表明Atala团队使用的“生物墨水”和ITOP制造的微型通道给打印器官成活提供了合适环境。
在研究中,Atala团队还在小鼠体内测试了ITOP打印的肌肉和颚骨,它们均能在小鼠体内形成血管和相应的软组织。目前ITOP打印技术还没有用于人体器官的打印,但是由于ITOP具有较强的适应性,下一阶段,Atala团队将利用ITOP开展人体器官打印研究。
University of Wollongong:手持式3D打印机
University of Wollongong(UoW,伍伦贡大学,曾用名:卧龙岗大学)建于1951年,位于澳大利亚新南威尔士州伍伦贡市,澳大利亚十大研究型大学之一。
UoW的Gordon G Wallace研究团队,联合墨尔本St. Vincent's医院联合开发了一台引领3D打印新变革的打印机。这台打印接很特别,因为确切的来讲它实际上是一支笔,一支可以完成3D打印的笔,它的名字叫3Doodler,长相如下图。
G Wallace带领的团队研发这支笔的初衷是:外科医生用这支笔将细胞直接“画”在受伤的骨头或者软骨上,以快速便捷地完成修复手术。目前3Doodler正在St. Vincent's医院开展临床试验。
3Doodler的工作原理跟我们平时使用的自来水笔很类似。首选需要在笔内灌装藻酸盐和干细胞混合而成的“生物墨水”,然后3Doodler会将“生物墨水”喷在骨头上,这些覆盖在骨头上的“生物墨水”在3Doodler发出的UV光照耀下发生固化,此时那些干细胞就被固定在受伤的骨头上。这些干细胞在合适的条件下会增殖,并分化成神经细胞、肌肉细胞和成骨细胞。最终形成新的组织。
从Wallace今年3月份发表在《Biofabrication》的研究结果来看,目前3Doodler打印出来的细胞存活率高达97%以上(5)。如果这种生物打印笔取得临床成功的话,将是对软骨组织修复手术的一次改革。
从上面几所研究机构的代表性研究成果不难看出,从只能打印出没有生物功能的组织,到具备部分功能的组织,再到直接可以临床应用的手持式原位打印设备。在短短的数年之间,3D打印技术已经取得了长足的进步。
干细胞技术的引入,让“生物墨水”的功能变得更加强大,研究人员因此拥有了更多的想象空间。但它同时也给研究人员带来了一些挑战,因为控制干细胞的分裂和分化是一件不容易的事情。研究人员还需要做更多的动物实验,研究这些打印的组织到底能不能在动物体内安全持久的工作。
参考文献
1.Kolesky DB, Truby RL, Gladman AS, Busbee TA, Homan KA, Lewis JA. 2014. 3D Bioprinting of Vascularized, Heterogeneous Cell-Laden Tissue Constructs. Advanced Materials 26:3124-30
2.Hinton TJ, Jallerat Q, Palchesko RN, Park JH, Grodzicki MS, et al. 2015. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Science Advances 1:e1500758
3.Ma X, Qu X, Zhu W, Li Y-S, Yuan S, et al. 2016. Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting. Proceedings of the National Academy of Sciences 113:2206-11
4.Kang H-W, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A. 2016. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotech 34:312-9
5.Cathal DOC, Claudia Di B, Fletcher T, Cheryl A, Stephen B, et al. 2016. Development of the Biopen: a handheld device for surgical printing of adipose stem cells at a chondral wound site. Biofabrication 8:015019
来源:奇点网微信号:公众号:geekheal_com 作者:周伦
为你推荐

药价查询,药价查询,全国已有29个省、市及新疆生产建设兵团上线定点药店比价小程序
据新闻联播报道,国家医疗保障局消息,截至目前,全国已有29个省(自治区、直辖市)及新疆生产建设兵团上线定点药店比价小程序,可实现药品价格在手机上一键查询、实时比对和位...
2025-02-22 21:28

CDE:晚期胃癌新药临床试验设计指导原则
胃癌(Gastric cancer, GC) 是我国高发的消化系统恶性肿瘤, 其新发病例数和死亡病例数分别位列我国恶性肿瘤发病和死亡的第 5 位和第 3 位。
2025-02-21 21:19

首款依视路星趣控眼镜于上海眼镜展全球首秀 专为近视管理设计 延缓中国儿童青少年近视进展
依视路星趣控眼镜提供符合人体工程学设计的镜架,满足不同年龄段的孩子在面部结构和尺寸上的显著差异,尺码范围广,覆盖38号至50号,为3-5岁儿童,6-9岁和10-12岁青少年年龄段提...
2025-02-21 17:33

百林科完成A+轮战略融资数亿元,多家投资机构联合投资
百林科成立于2021年9月10日,是一家专注于疫苗、抗体药物、重组蛋白、细胞治疗、基因治疗、血液制品以及其他生物制品关键工艺设备与耗材研发和制造的高科技企业。
2025-02-21 13:30

深研生物完成超3亿元B+轮融资,越秀产业基金领投
深研生物成立于2014年,是一家专注于细胞与基因治疗(CGT)领域的高新技术企业,致力于为核心技术与设备的自主研究和开发提供整体解决方案。
2025-02-21 13:23

阿斯利康以1.6亿美元收购珐博进中国,获得罗沙司他在中国的独家权利
昨日(2月20日)晚间,阿斯利康在其官微宣布与珐博进有限公司达成协议,将以约1 6亿美元收购珐博进中国。
2025-02-21 10:20

快速崛起的中国创新药公司,真实生物赴港IPO
2月18日据港交所披露,真实生物科技有限公司(以下简称“真实生物“)递交上市申请书,中金公司为其独家保荐人。这家成立于2012年的生物科技企业,以创新药物研发为核心,专注于...
2025-02-20 20:57

华东医药经皮肾小球滤过率测量设备获批,有望提供GFR监测新方法
2025年2月19日晚,华东医药(000963 SZ)公告,其全资子公司杭州中美华东制药有限公司申报的创新产品三类医疗器械经皮肾小球滤过率测量设备注册申请获得上市批准。
2025-02-19 19:15

国采中选企业满足一定条件,可变更药品上市许可持有人及生产企业、增加规格包装等,第一批名单发布
2月18日,国家组织药品联合采购办公室发布《关于国家组织药品集中采购部分中选药品信息变更的通知(第一批)》,涉及到5批国采的15个品种。
2025-02-19 18:26

凯米生物完成超亿元Pre-A轮融资首关,加速肿瘤治疗性疫苗全球布局
此次融资将用于加速核心产品SN3001(前列腺癌治疗性疫苗)、SN2001(慢性乙肝免疫治疗疫苗)的全球临床,以及基于SynNeogen®核心技术平台的肿瘤治疗性疫苗产品持续布局。
2025-02-19 13:50

潜在交易金额超12亿美元,石药集团ADC癌症新药达成国际授权合作
今日(2月19日),石药集团发布公告称,其控股子公司巨石生物与Radiance Biopharma达成协议,Radiance Biopharma将获得巨石生物自主研发的重组抗人类受体酪氨酸激酶样孤儿受体1...
2025-02-19 11:21

又一玩家加入,来自恒瑞医药的“近视神药”上市申请获受理
近日,恒瑞医药发布公告宣布,公司已经收到国家药监局下发的《受理通知书》,旗下产品 HR19034滴眼液的药品上市许可申请获得国家药监局受理。
2025-02-19 10:47

国家医保局:医保领域2025年度第一批重点事项清单
2025年底前,全国80%左右统区基本实现与定点医药机构即时结算。基本实现医保部门与医药企业对集采药品的直接结算,加快推动与医药企业对集采医用耗材、国谈药的直接结算。
2025-02-18 21:14

“悦如初,达新程” 2025特应性皮炎免疫创新学术会议于成都举办
特应性皮炎是一种慢性、复发性、炎症性皮肤病,在非致命性皮肤疾病中疾病负担位列第一,给患者个人及家庭带来沉重的生理、心理负担,造成长期的社会影响。
2025-02-18 10:58

拜耳在欧盟申请EyleaTM 8mg治疗间隔延长至6个月
拜耳已向欧洲药品管理局(EMA)提交申请,将EyleaTM 8mg(阿柏西普8mg,114 3mg ml注射液)用于治疗两种主要视网膜疾病,即新生血管(湿性)年龄相关性黄斑变性(nAMD)和糖...
2025-02-17 19:55

EyleaTM 8mg延长给药间隔治疗湿性年龄相关性黄斑变性的长期疗效和安全性在三年时得到证实
近日,在于美国迈阿密举行的第22届新生血管年会上,拜耳及其合作伙伴Regeneron公布了PULSAR开放标签扩展研究治疗新生血管(湿性)年龄相关性黄斑变性(nAMD)患者第三年的临床试验结果。
2025-02-17 19:44

备思复(维恩妥尤单抗)联合疗法全国首张处方落地,开启泌尿肿瘤精准治疗新篇章
2025年2月17日,北京大学肿瘤医院泌尿肿瘤暨黑色素瘤肉瘤内科主任、中国临床肿瘤学会副理事长兼秘书长郭军教授为一位晚期尿路上皮癌患者开具备思复(维恩妥尤单抗)联合帕博利珠...
2025-02-17 19:38

安诊儿率先融合DeepSeek-R1,升级大模型底座能力
2月16日,由浙江省卫健委和蚂蚁集团联合推出的 "安诊儿 "宣布融合DeepSeek-R1,升级大模型底座能力,成为国内首批支持专业推理模型的AI医疗健康应用之一。
2025-02-16 15:46