RNA结构组,一个姗姗来迟的名词

医疗器械 来源:科学网 作者:张学军
2015
07/26
20:14
科学网
作者:张学军
医疗器械


基因组、蛋白组和代谢组学研究已经成为常规生物学研究方法,但是对RNA分子进行组学研究依然属于少数实验室的专门技术,主要问题是分析技术的局限。2015年7月23日《自然》有文章专门对这个问题进行了介绍。国际上最早开展这样研究的实验室是用植物开始的,宾夕法尼亚州立大学化学家Philip Bevilacqua2014年在《自然》发表了第一篇RNA组学研究论文,开创了RNA组学研究技术。

RNA是细胞功能重要调节分子,这些分子结构必然能提供关于功能的重要信息,但生化学家一般都检测和分析RNA单分子,Bevilacqua认为,理解RNA应该对细胞内所有RNA分子进行整体研究,Bevilacqua首先考虑用植物细胞开展研究,虽然他没有任何研究植物生理学的经历,这显得有他过于胆大妄为,但是科学家就应该有一种敢于应对挑战的精神。

为了学习植物细胞知识,Bevilacqua首先恶补了植物解剖学的本科课程。为了解决RNA分析的技术瓶颈,Bevilacqua与植物分子生物学家Sarah Assmann合作,开发出一种能进行大规模RNA分析的技术。

2013年11月,Bevilacqua小组率先在国际上描述了活细胞内数千种RNA形态研究技术,并对植物模式生物拟南芥细胞内RNA形态进行了研究。2013年12月,加州大学旧金山分校采用类似技术报道了酵母和人类细胞的研究结果。北卡罗莱纳大学教堂山分校生物学家Alain Laederach说,这些研究在大规模RNA结构分析方面取得了突破性进。

RNA一直是科学家关注的分子,早期认为RNA只是在DNA和蛋白之间传递遗传信息的分子,生物学家现在知道,人类基因组85%能转录成RNA,但大部分RNA并不会翻译成蛋白质,而是拥有多种多样功能的调节分子,RNA不仅传递蛋白质合成的遗传信息,也是控制基因活性和调节其他RNA功能的重要因素。

不过,科学家对RNA复杂多样的结构并不十分了解。DNA是能预测的双螺旋结构,RNA与DNA不同,是单链折叠成的隆起、假结、头样、发夹等多种多样的复杂三维循环结构。满足不同功能状态的需要,不同折叠能相互转化。科学家对RNA的这些信息了解非常肤浅。生物物理学家Jonathan Weissman说,这正是关于RNA功能研究中最薄弱的环节。

最近几年,科学家开始对RNA结构研究发起挑战。Bevilacqua, Weissman等设计的技术能对细胞内大量RNA结构进行整体解析,初步研究结果发现,活细胞内RNA折叠方式与人工条件下的完全不同。他们提出了一些RNA折叠规则,这些规则可能对理解细胞功能和疾病有帮助。

Laederach说,RNA折叠规则是生物进化中的基本问题,能有助于理解各种RNA表现和功能机制,这是让生物学家最希望了解的内容。北卡大学化学生物学家Kevin Weeks是RNA结构研究专家,他认为进化过程中,RNA是保守的分子,序列和结构进化过程中发生很少变化。不过他指的保守结构和序列的分子是转运RNA、核糖体RNA和核酸酶。Weeks说,稳定序列的RNA不过是海量RNA世界中的个别现象。

加州大学欧文分校化学家Robert Spitale说,我们对大部分RNA的结构几乎一无所知,RNA分子通常有一个线性核苷酸链,但在细胞核内合成后,会通过自身核苷酸配对迅速折叠,然后进一步折叠成复杂三维结构,与蛋白和其他RNA分子发生相互作用时会改变形状。

研究RNA结构的大部分技术利用核苷酸相互结合的特点,或者序列对某些酶的敏感性。计算机模拟技术也有助于整体结构的分析。但是这些方法非常繁琐,一次只能分析一个分子的一部分。

五年前,加州大学基因组学家Howard Chang,联合以色列魏茨曼科学研究所计算生物学家Eran Segal开发了一种RNA结构的PARS技术。PARS技术利用RNA酶将RNA单链部分与双链部分切割。对目标RNA样本进行酶切,制造出两种RNA片段库,然后对两个RNA片段库分别进行序列分析,最后对这些片段进行对接分析,该技术的好处是可批量分析成千上万RNA。原理类似于利用质谱分析小分子原子组成的技术。

利用PARS技术,Chang和Segal对酿酒酵母3000多mRNA进行分析,并发现基因组中存在除非翻译区序列外更多复杂的奇怪结构成分。这些结构有重要生理意义,因为非翻译区通常需要与调节性蛋白相互作用。2014年,Yue Wan利用PARS技术对来自一家三口的血液细胞的20,000多个mRNA进行分析,发现大约1900个非编码单链变异区。

2015年5月,Laederach小组报道,一种mRNA非翻译区变异和一种罕见眼部癌症视网膜母细胞瘤有关。健康人的该mRNA有三种结构,但视网膜母细胞瘤只有两种。mRNA核苷酸结构变异能让该分子形成单链结构。Laederach认为,这种mRNA核苷酸结构变异可能与某些疾病和身高差异有密切关系。

PARS的主要缺陷是某些核酸内切酶不容易穿过细胞膜,因此只能将RNA从细胞内抽提出来,这将破坏细胞的天然结构。理论上RNA在细胞内和细胞外应该有大致相同的形状,但事实上这种操作会破坏结合RNA的蛋白,导致RNA在细胞内外结构上的差异。

为研究活体RNA结构,许多科学家采用硫酸二甲酯方法,硫酸二甲酯能够结合未折叠的RNA链,不能结合折叠的RNA链。硫酸二甲酯也能进入细胞内,在细胞内与未折叠的RNA链中四种碱基中的腺嘌呤和胞嘧啶反应。然后将RNA逆转录成DNA并进行序列分析。那些结合硫酸二甲酯的核苷酸不能被逆转录,通过分析缩短的DNA序列确定未折叠RNA链。

Weissman等将该方法应用于酵母和人类细胞全部mRNA分析,比较了活细胞和细胞破碎提取后再折叠RNA。参与该项目的Silvi Rouskin说,研究可对比活体和离体mRNA的差异,这非常有意思。许多科学家主观估计,细胞内RNA折叠更明显,因为细胞内有许多蛋白质能稳定RNA结构。Weissman的研究结果正好相反。他们分析可能是因为细胞内mRNA翻译成蛋白质时需要保持比较松散的结构。

使用硫酸二甲酯技术,Bevilacqua和Assmann分析拟南芥细胞mRNA后获得了奇怪的结果。一些在干旱情况下被激活的应激反应基因的mRNA在细胞内折叠程度远低于理论模拟。相反,维持细胞稳定的管家基因折叠程度与计算机模拟更接近。Bevilacqua等认为,应激反应mRNA折叠少是为提高相关基因翻译效率,应对外界环境改变,而管家基因mRNA必须保持稳定的表达。

硫酸二甲酯技术的只能确定一类核苷酸对,其余部分只能依靠计算机模拟填充。为获得细胞内RNA每一序列,Chang和Spitale使用改进的结构探针技术SHAPE6,对老鼠胚胎干细胞内19000个RNA结构进行整体分析(2015)。发现了的一种能促进mRNA分子伸展的常见化学修饰,对这些修饰部位分析可预测蛋白质结合和控制RNA形状的独特序列。

一些研究人员已经考虑将这些技术用于更多细胞。Assmann 和 Bevilacqua正在用这些技术对大米细胞RNA进行分析,并计划对其他农作物开展类似研究。他们希望通过这种研究,寻找到能操作RNA形状的方法,以作为提高作物的抗逆能力和产品产量。Rouskin正在研究果蝇RNA结构对胚胎发育的影响。

原文链接
http://www.nature.com/news/a-cellular-puzzle-the-weird-and-wonderful-architecture-of-rna-1.18014

医谷链

南京大学张辰宇microRNA团队突破埃博拉诊断治疗 RNA成药物产品新贵

来源:科学网   作者:张学军

为你推荐

湖北医保局发布全国首个脑机接口医疗服务价格资讯

湖北医保局发布全国首个脑机接口医疗服务价格

侵入式脑机接口置入费为6552元 次,侵入式脑机接口取出费为3139元 次,非侵入式脑机接口适配费为966元 次

2025-04-03 09:37

悦唯医疗完成近亿元A++轮投资,加速重症冠心病诊疗全流程创新器械研发与国产替代资讯

悦唯医疗完成近亿元A++轮投资,加速重症冠心病诊疗全流程创新器械研发与国产替代

此次融资将主要用于深化冠心病诊疗全流程创新器械和脉动式左心室辅助系统等新产品的研发,以及加速已获准上市的心脏稳定器等产品的市场推广。

2025-04-03 09:28

海尔盈康一生启动孤独症儿童关爱行动,创新罕见病可持续公益新生态资讯

海尔盈康一生启动孤独症儿童关爱行动,创新罕见病可持续公益新生态

本次活动聚焦孤独症儿童的诊疗,探讨交流AI赋能全流程防治康体系创新、前沿性生物科技诊疗技术等话题,旨在通过生态联盟的力量推动医学研究、科技创新与人文关怀的融合,让“星...

2025-04-03 09:11

诺华创新药物飞赫达®(盐酸伊普可泮胶囊)C3G适应症在中国获批资讯

诺华创新药物飞赫达®(盐酸伊普可泮胶囊)C3G适应症在中国获批

首款且唯一选择性靶向C3G病因药物,填补临床治疗空白

2025-04-02 18:14

国家卫健委:商业化人源细胞系是否纳入人类遗传监管?资讯

国家卫健委:商业化人源细胞系是否纳入人类遗传监管?

4月1日,国家卫健委科教司发布《人类遗传资源管理有关问题解答之一》。

2025-04-02 17:49

《NPJ digital medicine》刊发李冬梅教授团队成果:AI赋能高效识别眼睑肿物资讯

《NPJ digital medicine》刊发李冬梅教授团队成果:AI赋能高效识别眼睑肿物

亚太眼整形外科学会主席、中华医学会眼科分会眼整形眼眶病学组副组长李冬梅教授团队携手爱尔数字眼科研究所,在《NPJ digital medicine》(影响因子:12 4)学术期刊发表团队...

文/李林 2025-04-02 10:27

角膜移植点燃生命之光,爱尔眼科致敬全国角膜器官捐献者资讯

角膜移植点燃生命之光,爱尔眼科致敬全国角膜器官捐献者

角膜病是我国第二大致盲眼病

文/屈慧莹 2025-04-02 09:36

千亿GLP-1市场再添重磅产品,华东医药司美格鲁肽注射液国内上市申请获受理资讯

千亿GLP-1市场再添重磅产品,华东医药司美格鲁肽注射液国内上市申请获受理

本次申报适应症为成人2型糖尿病患者的血糖控制

2025-04-01 17:34

默克全球执行副总裁周虹:合作与创新是默克未来五年战略的两大关键词资讯

默克全球执行副总裁周虹:合作与创新是默克未来五年战略的两大关键词

近日,德国默克医药健康全球执行副总裁、中国及国际市场负责人周虹带领医药健康中国及国际市场管理团队开启了2025年度首次“中国行”。

2025-04-01 17:11

首个且唯一,阿斯利康PD-L1单抗获FDA批准治疗肌层浸润性膀胱癌资讯

首个且唯一,阿斯利康PD-L1单抗获FDA批准治疗肌层浸润性膀胱癌

度伐利尤单抗联合吉西他滨和顺铂作为新辅助治疗,随后度伐利尤单抗作为根治性膀胱切除术后的辅助单药治疗,用于治疗肌层浸润性膀胱癌成年患者。

2025-04-01 14:37

全国首个,湖北为脑机接口医疗服务定价资讯

全国首个,湖北为脑机接口医疗服务定价

昨日(3月31日),据“湖北发布”消息,湖北省医保局发布全国首个脑机接口医疗服务价格,其中,侵入式脑机接口置入费6552元 次,侵入式脑机接口取出费3139元 次,非侵入式脑机...

2025-04-01 11:03

一款国产创新流感药,获批资讯

一款国产创新流感药,获批

近日,据国家药监局官网信息显示,青峰医药下属子公司江西科睿药自主研发的1类创新药玛舒拉沙韦片(商品名:伊速达)正式获批上市,用于既往健康的12岁及以上青少年和成人单纯性...

2025-04-01 10:22

26省联盟药品集采启动,聚焦妇科用药和造影剂资讯

26省联盟药品集采启动,聚焦妇科用药和造影剂

近日,山西省药械集中招标采购中心发布《关于做好二十六省联盟药品集中带量采购品种数据填报工作的通知》,开展相关采购数据填报工作。

2025-03-31 21:48

优时比罗泽利昔珠单抗注射液(优迪革)中国获批,全球首个且唯一双亚型创新药治疗全身型重症肌无力资讯

优时比罗泽利昔珠单抗注射液(优迪革)中国获批,全球首个且唯一双亚型创新药治疗全身型重症肌无力

作为唯一人源化、高亲和力且具备创新修饰结构的IgG4单抗,关键Ⅲ期MycarinG试验证实罗泽利昔珠单抗注射液(优迪革®)较安慰剂显著改善全身型重症肌无力患者的多个临床终点与结局。

2025-03-31 15:58

从手术麻醉到生命全周期护航,麻醉学科发展拓宽生命边界资讯

从手术麻醉到生命全周期护航,麻醉学科发展拓宽生命边界

3月26日,由中华医学会麻醉学分会、中国医师协会麻醉学医师分会等23家学协会共同举办的2025年中国麻醉周学术活动的启动仪式举办,该活动以“生命之重,大医精诚——守生命保驾护...

2025-03-31 15:30

欧狄沃联合逸沃成为中国目前唯一获批的肝细胞癌一线双免疫联合疗法资讯

欧狄沃联合逸沃成为中国目前唯一获批的肝细胞癌一线双免疫联合疗法

欧狄沃联合逸沃对比仑伐替尼或索拉非尼,可显著改善不可切除肝细胞癌一线患者的总生存期(OS),客观缓解率(ORR)可改善近3倍,中位缓解持续时间(mDOR)达30个月

2025-03-31 13:45

罗氏制药榜首 “现金牛” 产品罗可适(奥瑞利珠单抗)在华获批:开启多发性硬化症一年两次治疗新时代资讯

罗氏制药榜首 “现金牛” 产品罗可适(奥瑞利珠单抗)在华获批:开启多发性硬化症一年两次治疗新时代

罗氏制药今日(3月31日)宣布,其旗下创新药罗可适®(Ocrevus®,通用名:奥瑞利珠单抗注射液 ocrelizumab injection)正式获得中国国家药品监督管理局批准,每六个月静脉输...

2025-03-31 13:39

与拜耳“分手”后,华堂宁卖得更好了资讯

与拜耳“分手”后,华堂宁卖得更好了

日前,华领医药公布了华堂宁被纳入国家医保目录后首个完整年的业绩数据。

2025-03-31 11:21

三生有幸,医者仁心:三生制药向全体医药工作者致敬!资讯

三生有幸,医者仁心:三生制药向全体医药工作者致敬!

3月30日是国际医师节,由三生制药公益支持的以“三生有幸,医者仁心”为主题的公益活动,携手20位医生代表,以寄语海报的形式,共同向全体医护人员表达诚挚的祝福与关爱。

2025-03-30 17:38